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CHAPTER 1

INTRODUCTION

This thesis is about the study of programming languages and their properties.

In order to do that mathematically, the behavior of the programming language must

be completely specified. A programming language is a special case of a formal lan-

guage. The study of the “meaning” of a language (formal or not) is called semantics.

The structure of the language is called the syntax. The motivation for this work is

to understand how much can be done mathematically to describe a language, espe-

cially the features of the language that can be manipulated by a computer from the

description alone.

1.1 What Is Language?

In order to develop a formal notion of a language, only two facts are required.

A language must consist of sequences of symbols, such as letters, sounds, words,

punctuation marks, or numbers. This collection of symbols is called an alphabet and

it must be finite. It must also have a structure, called sentences. Not every sequence

of symbols is a sentence in the language.

Linguists traditionally put more constraints on what qualifies as a language.

These constraints traditionally eliminate animal languages and languages which can-

not represent things that are not directly present, or express new ideas. These are

worthwhile things to study, but due to their subjective nature and for other practical

reasons, are overly restrictive to the goal of creating a formal, mathematical model

of languages.

1
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1.2 Syntax And Semantics

Syntax consists of the rules which control how sentences are formed from words.

Semantics is the study of meaning in languages. Attempts are often made to distin-

guish the two, but the discussion rapidly becomes philosophical. As will be shown

in this thesis, a more important feature of a complete language formalism (either se-

mantic or syntactic or both) is its total expressive power and whether it is decidable

or not.

1.3 Formal Definition Of A Language

Definition 1. Let Σ be a finite set of symbols, called the alphabet. The language, L,

is a collection of finite sequences over Σ.

While formal languages can often seem nonsensical in nature, this definition

encompasses some intuition from natural languages like English. If Σ includes the

English alphabet, punctuation marks, numbers, and a symbol for spacing, it is clear

that a “sentence” in English is a sequence whose elements are drawn from Σ. The

fact that the sentence must be finite in length is a reasonable requirement as well,

since an infinitely long sentence has never occurred in any language observed to date.

A more prototypical formal language would be a description of decimal num-

bers. In this case, one way to describe the langauge would be to let

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +,−}.

A decimal number consists a + or − followed by the digits 0-9, and optionally a

decimal point, followed by more digits 0-9.
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Sometimes sequences of symbols will be referred to as “strings”, and ε is used

to denote a string of length 0.

1.4 The Bit-string Description

How can a language L be described? One way is to order the elements of Σ

(it’s a finite set, so this is clearly easy to do; a phone book is an excellent example

of ordering an alphabet). Now, a simple procedure will produce all the strings from

the alphabet. Starting with a length of 0, list all strings of that length. This process

continues for each integer.

Consider the following example. Let Σ = {a, b}.

Length 0

ε

Length 1

a b

Length 2

aa ab ba bb

Length 3

aaa aab aba abb baa bab bba bbb

. . .

This is a actually a very special example. It is all the finite strings on the

alphabet Σ, which is called Σ∗ (pronounced “sigma star”). Note that all languages

are subsets of Σ∗. This leads to a first attempt at describing languages.
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Since the strings of Σ∗ are ordered, it is easy to check if a given string is in

the language L. If it is, write down a 1; otherwise, write down a 0. Starting with

the first string on Σ, this will produce an infinitely long sequence of 0’s and 1’s. This

“bit-string” (after a “bit” in a computer) is a description of L. It is important to

distinguish the alphabet (Σ) from the strings on the alphabet (Σ∗). The alphabet is

a finite set, the strings on the alphabet form a possibly infinite set.

Besides having an infinitely long representation, bit-strings have no desirable

properties for a formal description of L. They are hard to work with; they do not

take into account any repetitive structures within a language, and other than for

simple examples, it is not clear how to write or generate descriptions for languages of

interest.

This model is not totally useless, since it will allow one proof about languages.

Theorem 1. There are an uncountable number of languages on an alphabet Σ.

Proof. The argument uses diagonalization. Produce a list of all the bit-strings rep-

resenting all the languages. To build a language not in this list, the k’th character

of the bit-string will be opposite of the k’th bit of the k’th bit-string. The bit-string

represents a language (since we can identify a string with each bit), but it’s not in our

list (since the k’th bit of it forces it to be different from the k’th bit-string), which

contradicts our assumption that our list was complete.

1.5 String Rewriting

A much better model of formal languages is string rewriting. In the string

rewriting model, a language is described by a collection of rewrite rules. Rewrite

rules use two types of symbols. The first type of symbols are called terminals, and
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they are from an alphabet (which is usually called Σ). The other set of symbols are

called nonterminals, these symbols must comprise a finite set, and must not come

from Σ. The start symbol is a symbol arbitrarily chosen from the nonterminals by

the grammar writer, and it’s traditionally marked with a subscripted S.

Rewrite rules can be used to produce sentences from the language by a simple

process of substitution. Write down the start symbol; this string will eventually

become the sentence. Start by matching a piece of the current string with the left

hand side (lhs) of a rewrite rule, and replace it with the right hand side (rhs) of that

rule. This new string is used for the next stage of the process. When all nonterminals

have been eliminated from the string, a string (over the alphabet of terminals, Σ)

which is in the language described by the rewrite rules will be produced.

An example would help. Consider the following rewrite rules, where nontermi-

nals are denoted by uppercase letters, and terminals by lowercase letters. The start

symbol is subscripted with an S.

SS → A B C

A → a A

A → a

B → b B

B → b

C → C c C

C → c

C → ε

Note that there may be multiple rules with the same left hand side.
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Now, start the production of a string with SS.

SS

A B C

a A B C

a A b B C

a a A b B C

a a a b B C

a a a b B C c C

a a a b b C c C

a a a b b C c C c C

a a a b b c c C c C

a a a b b c c c c C

a a a b b c c c c

To formally restate this, the following definitions are given for your reading

pleasure.

Definition 2. Let Σ be a finite set of symbols called terminals, and let F be a finite

set of symbols called nonterminals such that Σ
⋂
F = ∅. Let S ∈ F be a special

nonterminal denoted as the start symbol.

Then, let u∗ be the set of all finite strings composed of symbols from Σ
⋃
F .

Then Γ is a rewrite rule if Γ ∈ u∗ × u∗. Then let Φ be a finite subset of u∗ × u∗.

The language, L produced from Φ is the set of all strings, α, consisting only

of terminals such that a finite sequence of applications of rules from Φ can produce α

from S.
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A string, αi ∈ u∗ is called a sentential form, and to apply a rule Γ = b → c

to αi, means that αi = dbe, such that d, e ∈ u∗ and αi+1 = dce.

1.6 Parsers, Recognizers, And Other Terminology

A collection of rules which can be algorithmically applied to generate a lan-

guage is called a grammar for that language. For instance, a set of rewrite rules which

produces a language L is called a grammar for L. There are usually many grammars

which describe the same language.

A Recognizer is an algorithm which, given a string α and a language L, can

determine if α ∈ L (i.e., a recognizer decides membership of α in L).

A Parser is an algorithm which, given a string α and a grammar for a language,

L, can recover a sequence of rewrite rules which produces α from the start symbol, S,

or determines that α /∈ L. Also, by the current restrictions on rewrite rules, there may

be multiple sequences of rewrite rules which produce α from S for a given language.

This is called ambiguity, and is the subject of a great deal of study to determine

whether a grammar describing a language can produce a string from the language in

multiple ways.

Sometimes the notion of a parse tree is mentioned in the literature. The

internal nodes of a parse tree are nonterminals, and the root is the start symbol. The

leaves are terminals. If a symbol is produced by the replacement of a nonterminal, it

is a branch of that node. The left to right ordering of nodes represents their ordering

in the sentential form.

Much of the material from this section and the presentation of bit strings was

adapted from [17].



CHAPTER 2

THE CHOMSKY HIERARCHY

In a series of papers published by Noam Chomsky in the late 1950’s, the

Chomsky Hierarchy of languages was established, along with the modern basis for

the study of grammars. Chomsky’s study was linguistics, but the budding field of

computer science found his formalism was suitable for use in describing computer

languages. The formal description of the programming language Algol 60 used the

BNF (Backus-Naur Form) notation described by John Backus and Peter Naur and

was based on Chomsky’s work.

The Chomsky hierarchy describes an increasing series of restrictions on rewrite

rules to create four sets of rewrite rules. A language is considered to be a member

of a class if it can be described by a set of rewrite rules in that class. However, a

language can be described (with varying degrees of difficulty) by multiple classes of

grammars.

Chomsky’s hierarchy is a set of increasing restrictions on the kind of rewrite

rules allowed. Yet as the restrictions increase, the languages that can be described

become simpler. The least restrictive grammar classes (Type 0, phrase structure

grammars) allow the most refinement in deciding which strings are members of the

language being described, so while all Type 1 languages can be described with a

Type 1 or a Type 0 grammar, not all Type 0 languages can be described by a Type

1 grammar. When a language is classified by the hierarchy it is considered to be a

member of the most restrictive class which still allows the language to be defined by

a grammar of that class.

8
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2.1 The Backus-Naur Form

There are many notations to describe rewrite rules, and many differ only in

cosmetic details, but these details matter. The Backus-Naur form (BNF) is a very

popular notation, and will be constantly used in examples in this thesis. In the au-

thor’s opinion, it is a much more readable notation than many of the other options.

The BNF notation is also the most well known notation among practicing computer

scientists, and has superseded other notations used in the older literature on pars-

ing (in particular the Wijngaarden notation used by other formalisms). For a good

discussion of the Wijngaarden notation, see [5].

In the BNF notation, a nonterminal is denoted in angle brackets 〈 〉, and

nonterminals are simply Latin letters (or an appropriate symbol set for the language).

The start symbol is still subscripted with an S. Also, in the case of multiple rules with

the same left hand side, the various right hand sides are distinguished with a |(which

can be read like a logical ’or’). So consider the example grammar from Chapter 1.

〈S〉S → 〈A〉 〈B〉 〈C〉

〈A〉 → a 〈A〉 | a

〈B〉 → b 〈B〉 | b

〈C〉 → 〈C〉 c 〈C〉 | c | ε

2.2 Type 0: Phrase Structure Grammars

Type 0 grammars have no restrictions on rewrite rules. Any combination of

terminals and nonterminals are permitted on both the left and right hand side of

the rule. A Type 0 rule takes 1 or more symbols and replaces them with 0 or more
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symbols. A rule which replaces a symbol with nothing is called an ε rule (remember

ε is the string of length 0).

2.3 Type 1: Context Sensitive Grammars

Type 1 grammars come in two varieties, but both are equally powerful, and

colloquially called Context Sensitive Grammars. Type 1 languages are much more

interesting, if nothing else, because they can always be parsed in Exponential time,

and there are no theoretical limitations on the existence of reasonably efficient parsers.

A Type 1 rule is context sensitive if only one nonterminal in the left hand side

is replaced on the right hand side, while all other symbols remain unchanged. The

symbols left unaltered are called the context of the rule. Since the context matters,

replacements of nonterminals are sensitive to the context. A Type 1 rule is monotonic

if the left hand side consists of fewer symbols than the right hand side, or the same

number of symbols as the right hand side.

A grammar is Type 1 context sensitive if all the rules are context sensitive. A

grammar is Type 1 monotonic if all the rules are monotonic.

Theorem 2. For any Type 1 context sensitive grammar, there exists a Type 1 mono-

tonic grammar describing the same language [17].

The language anbncn is often cited as the “simplest” example of a context

sensitive language. The exponentiation is often a shortcut in grammars to represent

repetition, so this is the language of all strings with the same number of a’s, b’s and

c’s (in that order).
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Type 1 Grammar for anbncn.

〈S〉S → abc | a 〈S〉 〈Q〉

b 〈Q〉 c → bbcc

c 〈Q〉 → 〈Q〉 c

Of course, the language anbncndn is also Type 1 as well, and it is here that

the shortcomings of Type 1 grammars can be seen. While some of the techniques are

similar, this is not a simple addition to the previous grammar, and involves changes

to almost all the rules along with several new rules.

Type 1 Grammar for anbncndn.

〈S〉S → abcd | a 〈S〉 〈Q〉

c 〈Q〉 d → 〈B〉 ccdd

d 〈Q〉 → 〈Q〉 d

b 〈B〉 → bb

c 〈B〉 → 〈B〉 c

2.4 Type 2: Context Free Grammars

A rewrite rule is type 2 context free if the left hand side consists of only a

single nonterminal.

Context Free languages and Context Free Grammars (hereafter CFG’s) are

the most popular of the Chomsky hierarchy, but several interesting (and difficult)

problems remain open. One open problem is to produce an efficient linear time

(O(n)) parser for ALL Context Free languages. It is NOT known whether a general
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unrestricted CFG can be parsed in linear time. Automatic methods can create linear

time parsers for subsets of CFG’s such as LL(k), LALR(k), but the most efficient

general parsers only work in O(n3), with the most efficient one being O(n2.87). Even

more frustrating is that no one has ever created a CFG for which an “ad hoc” parser

could not be constructed by hand that worked in linear time. These results, along

with more details are explored in depth with further references in [17].

In context of the previous example, the language anbncm is almost the language

anbncn. A context free language can enforce that the number of a’s match the number

of b’s (or that the number of b’s and c’s match), but not all three. The reason is the

Pumping Lemma for Context Free Languages, which dictates that all strings in the

language can be divided into five pieces, uvwxy, and there is a set of basis strings

which produce all the strings of the language in the form uvnwxny. It is easily shown

that all strings of the form anbncn cannot be divided in such a manner (however,

the language anbncm and its variants can, and contain the language anbncn as a

sublanguage).

〈S〉S → a 〈T 〉 b 〈Q〉 | ab

〈T 〉 → a 〈T 〉 b | ab | ε

〈Q〉 → c 〈Q〉 | c

2.5 Type 3: Regular Grammars

A rewrite rule is type 3 regular if its left hand side consists of only 1 nonter-

minal, and its right hand side consists of zero or more terminals followed by at most

1 nonterminal.
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Regular languages encompass what are called regular expressions by program-

mars, and while there are problems that remain open, they have little impact on

the usability of Regular Grammars in practice, and there is no pressing interest in

solving them. Regular languages are often used to describe the “lexing” aspect of

many parsers, which creates some problems as well as solving others (such as ignor-

ing white space). Most of the problems remaining with regular languages are practical

engineering efforts to design optimal parsing engines that are easy to use.

At this point, given the example language anbncn, it is no longer possible to

restrict the number of a’s to match the number of b’s. This can be shown through use

of another Pumping Lemma, similar to the Context Free one, except now the strings

must be of the form uvnw.

〈S〉S → a 〈A〉 | a

〈A〉 → a 〈A〉 | a 〈B〉 | a

〈B〉 → b 〈B〉 | b 〈C〉 | b

〈C〉 → c 〈C〉 | c

2.6 Finite Languages

Although not part of the original Chomsky hierarchy, a rewrite rule presents

a “finite choice” language if the left hand side consists of only 1 nonterminal, and the

right hand side consists of only terminals. Any other nonterminal besides the start

symbol will be ignored, and any finite language can be described this way.
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2.7 Syntax And Semantics Revisited

It is traditional to consider a feature of a language to be syntactic if it can be

described by a Type 2 context free grammar. However, in the attempt to “interpret”

a language, specific meanings are attached to nonterminals and terminals, and a

sequence of transformations can be applied to the parse tree. The “meaning” of

the tree is then the final state of the tree. The transformations could be a series of

reductions, which can perform basic arithmetic, or could be a rearrangement of nodes

into terminals and nonterminals from another language (which could be a translator

English to French, or C++ into Java).

In this view, it is tempting to consider the nonterminals as the basic under-

pinning for the meaning. In fact, many grammars are written with suggestive names

for the nonterminals which lead to a temptation to interpret a language by the non-

terminals. But in the discussion of grammar classes, no meaning was attached to

nonterminals, and if two grammars produced the same set of strings, the languages

produced by the grammars are considered to be the same. In fact, many transforma-

tions can be applied to grammars to convert them into various normal forms. Some

of these transformations require the introduction of new nonterminals, or the elim-

ination of nonterminals and merging their productions. This is very inconvenient if

the nonterminals are the basic unit of meaning in a language.

In this case, a language may be context free, but the grammar preserving the

nonterminals may be forced to be context sensitive. This is the difficulty of semantics.

Also, the ambiguous case of two sequences of productions leading to the same final

sentential form is another difficulty, since different sequences would indicate different

“semantics”.
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Also, the notion that a context free language cannot express context sensitive

information is slightly misleading. A context free grammar can only express a finite

number of context dependencies. For example, consider a programming language

where a variable must be declared before it is used in an expression. It is possible to

write context free rules that force a particular variable, like x, to be declared before

it is used. Since most programming languages do not place an upper bound on the

number of variables that can be declared, it is not possible to write the infinite set of

rules required to express that any variable must be declared. Of course, in practice,

only a small, finite number of variables will actually be used, but it would clutter

the grammar with a very large number of rules (for variable names with 10 lowercase

letters, the number of variables is already 2610), however, a diligent reader might

observe that these rules would all take very similar forms, and could be produced by

another algorithm, and that is the central insight of van Wijngaarden grammars and

the family of two level grammars.

The issue is further blurred by the fact that context sensitive grammars can

express (albeit with much difficulty) many issues traditionally ascribed to semantics,

such as declaration of variables before use, and data typing rules in programming

languages. In fact, Turing machines may be constructed from Type 0 rules and vice

versa, so the rewriting process, applied to Type 0 rules generated from a Turing

Machine, would execute the program described by that Turing Machine. The line

between grammars and meaning is very fuzzy. It is also possible to write Type 0

grammars that describe the set of all true statements from a set of axioms (although

very difficult). In this case, a parser for a Type 0 grammar would generate the se-

quence of productions required to generate a statement, or decide that the statement
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is not a member of the language. A parser for a Type 0 language would be a theo-

rem prover! Grammars can go right to the heart of mathematics and formal logic.

There are, unfortunately, strong theoretical reasons why a parser for a general Type

0 grammar cannot be constructed, especially one which would always halt, or not get

stuck in loops of generating vacuously true statements like 1 = 1, 2 = 2, . . ..

However, Type 1 languages, which pose no such theoretical limitations, show

promise of being practically implementable. A parser for a Type 1 language would

be suitable as a proof checking tool (such as Mizar). However, Type 1 grammars are

difficult to write, understand, and modify.

Two level systems, which include most formal systems of semantics, provide a

different approach. In a two level system, the first level is often a Context Free Gram-

mar, and the second level, the meta-system, operates on an abstract representation of

the first system, through the use of metavariables and consistent substitution rules.

In fact, the quest to create a usable semantic formalism often involves the use of

a two-level system whose expressive power is contained in the consistent substitution

rules for metavariables. However, the complexity of most two-level systems makes

computer implementation of practical parsers almost impossible if not in theory, then

at least in practice.

Ultimately a formal language represents a formal system, and in that regard,

the semantics and syntax of the language completely specify the behaviour of the

system. The expressive power of the formalism as a whole is what is important,

especially when coupled with facts about its decidability.
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COMPUTABILITY THEORY

While the issue of the dividing line between syntax and semantics is an is-

sue of philosophy (at least in mathematics), the systems created for the specification

of semantics are useful, and represent an important alternative to grammar based

systems both as a benchmark, a source of ideas, and even components of other gram-

matical formalisms. Many basic computability results for grammars also involve the

two foundational formal models of computable functions. The Lambda Calculus of

Church is also a foundation for both Operational and Denotational Semantic Models

as well.

3.1 Turing Machines

Turing Machines, described by Alan Turing during the 1930’s, are one of the

oldest models of mechanical computation.

Turing Machines have a tape which is used for the starting configuration, and

is written to during the running of the machine. A finite alphabet of symbols can

be written on the tape. Symbols will be denoted by Sj, where 0 ≤ j ≤ m and m is

the number of symbols in the alphabet. The tape is considered to be infinitely long,

but the initial configuration is of finite length, and the initial position of the head is

known.

Turing machines also have a finite number of states, labeled qi, where 1 ≤ i ≤ R

where R is the number of states. The machine starts in a predetermined state.
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Instructions for a Turing Machine are written as a 4-tuple:

(qi, Sj, I, ql).

The I is the instruction to be performed. It can be either an L, R, or Sk where

0 ≤ k ≤ m. The tuple can be read as an if-then instruction. If the machine is in state

qi and the current symbol under the head is Sj, then perform the instruction I and

transition to state ql. If I is an L then the head is moved left one cell of the tape. If

I is an R, the head is moved right one cell of the tape. If I is Sk, then the symbol Sk

replaces the symbol Sj at the current tape position. Also, there can be at most only

one tuple having qi and Sj, and while there are variations eliminating this restriction

involving nondeterminism, it is not necessary to remove that restriction, so this will

keep things simple. A Turing Machine is considered to be halted if there is no qi and

Sj in the instruction table matching the current configuration of the machine. Also,

blanks on the tape are represented by the symbol S0, which is implicitly on the ends

of the configuration tape, repeating off to infinity in both directions.

Table 3.1. Example of an initial configuration tape

S1 S2

q1︷︸︸︷
S3 S4 S5 S6

3.2 The Halting Problem

While the Halting Problem is normally phrased in terms of Turing Machines,

the proof is clearer when presented in a function-based notation. The basic question

is whether there exists a computable function which decides if every computable
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function, on a given input will terminate with a value (in the lambda calculus, a

function would not halt if it does not reduce to a value).

Theorem 3. Given a function f and its argument x, there does not exist a function

which, given f and x which evaluates to 1 if f(x) is defined, and 0 if f(x) is undefined.

Proof. Assume such a function exists, halt(f, x). We can define another function

contradiction(s) such that if halt(s, s) = 1 (i.e. s does not halt when given itself as

its input), contradiction(s) evaluates to 0, and is undefined if halt(s, s) = 0.

Now, what is the value of contradiction(contradiction)? Assume it is defined;

that means:

halt(contradiction, contradiction) = 1

But that means contradiction(contradiction) is undefined, which contradicts our as-

sumption. Assume it is undefined; that means:

halt(contradiction, contradiction) = 0

But that means contradiction(contradiction) is defined, which also contradicts our

assumption. Therefore, no such function halt(f, x) can exist.

Not all is lost; Partially computable functions can be defined which decide if

a function halts on a given input (it can simulate the execution of the function, and

if the function terminates, then it can evaluate to 0), and decide in some cases it will

not halt (the function repeats a previous state of simulation) and return 1, and is

undefined otherwise.
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3.3 Semi-Thue Processes

The notion of rewrite rules are also known as a semi-Thue process. Given a

pair of words on an alphabet, g and g′, a semi-Thue production is written:

g → g′

If P is a semi-Thue production g → g′, then u ⇒P v means that there are words

(possibly null) r and s such that by replacement of g with g′ then v can be derived

from u.

u = rgs and v = rg′s

A semi-Thue process is a finite set of semi-Thue productions, and if there is a

finite sequence of productions such that

u ⇒ u1 ⇒ . . . ⇒ un ⇒ v

then to state that v is derivable from u write u ⇒∗ v.

A grammar is a special case of a semi-Thue process where the words are divided

into two categories (terminals and nonterminals). The set of all derivations from the

start symbol S ⇒∗ v such that v contains only terminals is the transitive closure of

that symbol and is equivalent to the language generated by the grammar.

Semi-Thue processes are equivalent in power to a Turing Machines. While this

result may seem surprising at first, it is easy to show that a set of productions can

be created which will simulate the execution of an arbitrary Turing Machine. Since
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phrase structure grammars (Chomsky Type 0) are just a special case where the words

are divided into two categories, this result also shows the equivalent computability of

Grammars and Turing Machines (a case of the Church-Turing thesis).

Starting with a Turing MachineM with alphabet s1, . . . , sk and states q1, . . . , qn.

The semi-Thue process will have the alphabet:

Σ = {s0, s1, . . . , sk, q1, . . . , qn, qn+1, h}.

Machine configurations will be represented by words. For example, the configuration:

will be represented by the word hs1s2q1s3s4s5s6h.

s1 s2

q1︷︸︸︷
s3 s4 s5 s6

The h’s are used as markers to denote the beginning and end of a configuration,

and the state is placed preceding the symbol at which it is currently positioned. The

s0 letter is used to represent blanks on the configuration tape, and so multiple words

may be used to represent the same configuration since it is possible to omit any

number of leading and trailing blanks. The qn+1 state is used to denote the halt

state.

Now, the 4-tuples used by the Turing Machines are of the form (qi, sj, I, ql)

where qi is the current state, sj is the current letter under the read head, I is an

instruction to either advance left, right, or to write the character sm to the tape, and

ql is the new state. Productions can now be associated with these tuples.

In the case where the tuple is of the form (qi, sj, sm, ql) add the following

production:

qisj → qlsm.
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In the case where the tuple is of the form (qi, sj, L, ql) add the following pro-

ductions:

smqisj → qlsmsj, where m = 0, . . . , k

hqisj → hqls0sj.

In the case where the tuple is of the form (qi, sj, R, ql) add the following pro-

ductions:

qisjsm → sjqlsm, where m = 0, . . . , k

qisjh → sjqls0h.

Thus, each production will create new words representing the next configura-

tion in the computation. Of course, if the Turing Machine is nondeterministic, the

set of words derivable from an initial configuration in n steps will not be unique, but

this should not come as a surprise and is in fact an appropriate result. Of course,

all this discussion is somewhat intuitive. It will now be shown that this semi-Thue

process really does simulate the given Turing Machine.

Theorem 4. Let M be a nondeterministic Turing machine. A string α on the al-

phabet of M is accepted by M iff

hq1s0αh ⇒∗ hq0h.

Proof. ⇒. Suppose M accepts α. So M begins with the tape empty except for

α, and the tape head positioned at the blank preceding α, since it accepts α it will

reach a state qi over symbol sk such that no quadruple in M matches. So, given

the semi-Thue process as constructed previously, with appropriate words β, ζ, we will
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have that:

hq1s0αh ⇒∗ hβqiskζh ⇒ hβqn+1skζh ⇒∗ hβq0h ⇒∗ hq0h

Since this is what we wanted, we have proved that if M accepts α then our semi-Thue

process will properly simulate M.

⇐. Suppose M does not accept α. So, with our initial configuration as before,

M will not halt. Let w1 = hq1s0αh, and suppose that:

w1 ⇒ w2 ⇒ . . . ⇒ wm

So, each wj, 1 ≤ j ≤ m, must contain a symbol qi with 1 ≤ i ≤ n. So there can be

no derivation from w1 which contains q0; in particular, we cannot derive hq0h.

The previous theorem was for nondeterministic Turing Machines. Since deter-

ministic Turing Machines are just a special case of nondeterministic machines, the

theorem holds for those as well. Much of this discussion was heavily influenced by [8].

Much of the literature, particularly older literature, on parsing refers to semi-Thue

processes, but it is rarely defined outside of textbooks.

3.4 The Partial Correspondence Problem

The Partial Correspondence Problem for Languages is based on the Corre-

spondence Problem from Algebra. This particular version of the problem was used

by Knuth [18] to simplify decidability results for problems in languages.

[The Partial Correspondence Problem] Let (α1, β1), (α2, β2), . . . , (αn, βn)

be ordered pairs of non-empty strings. Do there exist, for all
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p > 0, ordered p-tuples of integers (i1, i2, . . . , ip) such that the

first p characters of the string αi1 , αi2 , . . . , αip are respectively

equal to the first p characters of βi1 , βi2 , . . . , βip?

The problem is strange, and so some clarifications and explanations should be made.

The idea is that the sequence of i’s is used to create two strings, one composed of α’s

and the other of β’s. Since each α and β is at least one character long, the strings

created by a sequence of p i’s will be at least p characters long.

Now, the partial correspondence problem for a particular set of a ordered pairs

is true means that no matter what p is chosen, a sequence of i’s can always be found

which will make two strings that are equal in the first p symbols. The problem is

false means that for some p, there is no sequence of i’s that can be found.

Certainly, for each p, we can try all possible combinations to see if a sequence

of i’s works. After all, there are only a finite number of ordered pairs and only a finite

number of i’s. The problem is that the Partial Correspondence Problem is true only

if a sequence can be found for all possible values of p.

Another point about this is that if there’s a pair such that αk = βk, the

problem is trivially true, since a sequence of p k’s will always produce two strings

that match. The difficulty in this problem lies in the fact that there is no algorithm

which can always determine whether it is true or false, such programs will only catch

increasingly larger sets of special cases.

The proof technique is particularly convenient. The Halting Problem is a

well-known problem which is recursively unsolvable. Given a Turing machine and its

input, it is not possible to determine if the machine will halt after a finite amount

of time, other than by running the machine. If the Partial Correspondence Problem

can be reduced to the Halting Problem, it too is recursively unsolvable.
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The value of this fact is that many decidability problems for grammars can be

reduced to the Partial Correspondence Problem.

Theorem 5. The Partial Correspodence Problem is an unsolvable problem. In other

words, a recursive algorithm can always tell if the Partial Correspondence is true

if and only if a recursive algorithm can be found which always solves the Halting

Problem.

Proof. Given a particular Turing Machine, we are going to construct a Partial Cor-

respondence Problem for that machine such that the Problem is true if and only if

the Machine never halts. Let our alphabet be:

`, qi, q̄i, Sj, S̄j, h, h̄ where 1 ≤ i ≤ R, 0 ≤ j ≤ m

The qi’s and Sj’s are from our Turing Machine. `, h and h̄ are used for special

conditions in our Partial Correspondence Problem.

In the initial configuration of the Turing Machine’s tape, we will let qi1 denote

the position of the tape head and the initial state. So if our initial configuration is:

Sj1· · ·Sjk−1
qi1Sjk

· · ·Sjx

Our first pair is:

(`,` hSj1· · ·Sjk−1
qi1Sjk

· · ·Sjxh)
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Now, the following pairs will also be added:

(h̄, h), (h, h̄),

(S̄j, Sj), (Sj, S̄j), where 0 ≤ j ≤ m

(q̄i, qi) where 1 ≤ i ≤ R

Also, for the tuples in the Turing Machine, we will add these pairs as well:

Tuple Pairs, 0 ≤ t ≤ m
(qi, Sj, L, ql) (hqiSj , h̄q̄lS̄0S̄j), and (StqiSj , q̄lS̄tS̄j)
(qi, Sj, R, ql) (qiSjh , S̄j q̄lS̄0h̄), and (qiSjSt , S̄j q̄lS̄t)
(qi, Sj, Sk, ql) (qiSj , q̄lS̄k)

Now, since ` only occurs in one pair, and none of the other pairs have the

same beginning symbol, if the correspondence problem is to be true, it must start

with the first pair, containing the `. Also, note that since all the other αk’s and βk’s

are equal in length, the β string will always be running ahead of the α string.

Now, the h and h̄ are used to denote the end and beginning of a stage of

computation. Note that α’s will be added to match the symbols of the tape, adding

barred versions to the end of the β string, until a qi is found. At the point, a pair

matching the appropriate Turing Machine state will be added to the α string, and

the result of that step will be added to the β string. The L and R cases have two

pairs in case the head is at the left or right end of the tape, which merely inserts a

blank (S0).

After the computation step is complete, the barred α’s will be brought in to

play, note that since only unbarred q’s occur in the pairs added for the Turing Machine

states, and only barred α q’s result in an unbarred string, an unbarred version of the

previous computation will be appended to β while the α string matches the barred

computation. Once the alpha string gets to the end of the copy process, another
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barred computation stage begins, so the resulting string takes the form:

` α0ᾱ1α1ᾱ2α2· · · ,

where the αi’s represent the state of the tape at the end of each “execution”

cycle of the Turing Machine.

Now, it should be clear that, if the Turing Machine never halts, it represents a

solution to the Partial Correspondence Problem for values of p, since it will continue

to produce matching strings of ever increasing length.

In the case where the machine halts, a (qi, Sj) pair will have been produced

for which no tuple exists in the Turing Machine. Since that tuple did not exist, no

pair matching for it would have been added for the Partial Correspondence Problem,

so no α will be found matching it, so no more exploration down that route remains.

Since there was only one possible starting pair, this is the only path for a solution to

the Partial Correspondence Problem, so the Partial Correspondence Problem is false.

This means that the Partial Correspondence Problem is true if and only if the

Turing Machine associated with it never halts. Since this is what we were looking

for, the Partial Correspondence Problem is unsolvable since the Halting Problem is

unsolvable.

This particular presentation of Post’s Correspondence problem was mostly in-

fluenced by [18], and was chosen for its relevance to the LR(k) grammars presented

in the next chapter. Knuth does not refer to semi-Thue processes in his presenta-

tion, but a separate discussion of them alleviates some of the notational burden in

explaining the Correspondence problem.



28

3.5 Recursively Enumerable Languages

Definition 3. A set S is Recursively Enumerable (abbreviated RE) if it is the range

of a partially computable function.

More simply, if a Turing Machine M halts with input x, then x is in the range

of the function computed by M. If M does not halt, x is not in range of the function.

How might such a set be enumerated? Since it’s potentially infinite, the entire

set will never be generated, but the steps of M can be dovetailed such that, if ran

forever, all inputs will be fed to M so that set generated by M is produced.

Definition 4. A set S is Recursive if both it and its complement are the ranges of

partially computable functions.

Interestingly enough, the two partially computable functions can be combined,

such that steps are alternated (dovetailing), and make a completely computable func-

tion (it always halts) which decides if x is in M (e.g. by which state it halts in).

Such a set is always decidable.

It is rather easy to extend these definitions to languages. Since a language is

a set of strings it may be said that:

Definition 5. A language is Recursively Enumerable means if it is generated by a

partially computable function.

Definition 6. A language is decidable if it is a recursive set.

Of course, with all these definitions, several questions arise about containment

of RE sets and recursive sets. Any good reference on computability will provide these

theorems and their proofs, but at least one interesting example will be considered, a

set which is not recursively enumerable.

In the study of computable functions, it is common to convert them into num-

bers, using a variation on Gödel numbers, and thus it is possible to represent functions
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on numbers as numbers. Of course, a function f(x) on the integers is a total function

if it halts for every integer x.

Let T be the set of all numbers p such that p is the number of a total function

on one parameter (f(x)). First a lemma is needed, whose proof is omitted.

Theorem 6. If S is a nonempty, recursively enumerable set, then there is a primi-

tively recursive function f(u) such that S = {f(n)|n ∈ N} = {f(0), f(1), f(2), . . .}.

That is, S is the range of f .

Theorem 7. T is not recursively enumerable.

Proof. Suppose T were recursively enumerable. By the previous theorem, there is a

computable function g(x) such that T = {g(0), g(1), . . .}.

Now, g(x) gives the number of a total function, f . Now, since f is a total

function of one parameter, we may apply f to any number we want. We will define

a function h(x) = f(x) + 1, where f is the function whose number is g(x). For every

x, g(x) is defined, and since the function f whose number is g(x) is total, f(x) is

computable as well. Finally, since addition by one is computable, we may say that

h(x) is a total function, since its value for every x is computable.

Let p be the number of h, since h is a total function, p ∈ T , so there is some

i such that g(i) = p.

So what is the value of h(i)? Well, h(x) is the function whose number is g(i).

Recall, h(x) = f(x) + 1, but in this case, h(i), f = h, so:

h(i) = h(i) + 1
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But h(i) is an integer, and there is no integer which satisfies this equation, so

we have a contradiction. We assumed that T was recursively enumerable; therefore,

T must not be a recursively enumerable set.

While contradiction proofs can be frustrating, an interesting example of a set

which is not recursively enumerable has been obtained. The proof is also a diagonal-

ization proof, which is common in this area of computability, and so demonstrates an

important technique as well.



CHAPTER 4

SOME PROPERTIES OF CONTEXT FREE GRAMMARS

4.1 LR(k) Property

In 1965, Knuth[18] identified the class of LR(k) grammars and parsing algo-

rithms which characterize the deterministic languages. In the paper, Knuth describes

languages that are translatable from left to right, and explains the details of a bottom-

up parsing algorithm for parsing them which, given a constant lookahead k, will not

backtrack (which makes it a deterministic parsing method). He then shows how to

determine whether a given grammar G is LR(k) for a given k. He then shows that

determining whether there exists a k such that a grammar G is LR(k) is an unsolvable

problem. Knuth completes his work by showing that if a grammar is deterministic,

there exists a grammar which parses it which is LR(k) for some k, and then he shows

that if a grammar is LR(k) then an LR(1) grammar exists which parses the same

language.

The distinction between grammars and languages has been made before. In

dealing with the LR(k) property it is of utmost importance to realize the distinction.

Definition 7. A grammar G is said to be LR(k) with integer k if every handle is

uniquely determined by a lookahead of at most k characters.

Definition 8. A language L is said to be translateable from left to right if there exists

a grammar which accepts L for which the LR(k) property holds for some integer k.

The previous qualification is incredibly important if semantics are involved.

Nonterminals are often ascribed meanings for various semantic purposes. A language

may be generated by an LR(k) grammar, but the most convenient grammar for

31
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semantic purposes may not be LR(k) for any k. In that case, a decision must be

made to modify the grammar and adapt the semantics or use a less efficient parsing

method (a third option is available but it is not usually the case: hope the grammar

happens to be parsable by some other linear time method such as LL(k)).

Definition 9. A k-sentential form is a sentential form followed by k characters,

denoted by a where a is a symbol not in the alphabet of the language in question.

Definition 10. (n, p) is a handle of α means that if α = X1 . . . XnXn+1 . . . Xn+kY1 . . . Yu

means that X1 . . . Xn is obtained by application of the p’th production of the grammar

G.

4.2 LR(k), Given k, Is Solvable

It will now be shown how to determine if a given grammar G is LR(k), given

a particular value of k.

Let I be the set of nonterminals in G and T be the set of terminals. In order

to show that a grammar G is LR(k) a new grammar will be constructed, F , which

produces all possible handles and the k characters to the right of it. Number the

productions of G, where Ap denotes the p’th production in G. Let SG be the start

symbol of G and SF be the start symbol of F .

The nonterminals of F will be of the form 〈A, α〉 where A is a nonterminal

from G and α is a k-letter string on T
⋃
{a} where a/∈ T . The terminals of F will be

I
⋃

T
⋃
{a} and symbols of the form [p] where [p] is a symbol for the p’th production

of G

Let Hk(σ) be the set of all k length strings β over T
⋃
{a} such that σ ⇒∗ βγ

with respect to G for some γ. There is a set of strings derivable from σ by G. Hk(σ)

gives all the strings of length k that are the first k characters of those strings.
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Now, in G, let the p’th production be of the form.

〈Ap〉 → X1
p . . . Xn

p

Now, add to F all productions of the form:

〈Ap, α〉 → X1
p . . . Xj−1

p 〈Xj
p , β〉

where 1 ≤ j ≤ n and Xj
p is a nonterminal, and α and β are k-letter strings over

T
⋃
{a} and β is in Hk(X

j+1
p . . . Xn

p α).

Also, add productions of the form:

〈Ap, α〉 → X1
p . . . Xnα [p ]

to F as well.

Now, to show that it is true with respect to F that

〈SG,ak〉 ⇒ X1 . . . XnXn+1 . . . Xn+k [p ]

if and only if there exists a k-sentential form X1 . . . XnXn+1 . . . Xn+kY1 . . . Yu with

handle (n, p) and Xn+1 . . . Yu terminals.

Now, by definition G will be LR(k) if and only if F satifies the property that

if

〈SG,ak〉 ⇒ θ [p ]

〈SG,ak〉 ⇒ θφ [q ]
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implies φ = ε and p = q.

Of course, since F is a regular language (Chomsky Type 3) it is easy to test

this property of F .

This is not the most computationally practical test for the LR(k) property. In

fact [18] presents two different tests. There are several others, some of which construct

parsers for the language generated by G.

4.3 LR(k) Is An Unsolvable Problem

Earlier, Knuth’s algorithm for determining if a grammar is LR(k) for a given

k was explained. Unfortunately, given a grammar, it is not possible to find a k for

which that grammar is LR(k). This is shown by reducing the LR(k) problem to the

Partial Correspondence Problem. The basic idea is that if the Partial Correspondence

Problem is positive, then the grammar is not LR(k) for any value of k. However,

if the result is negative, the grammar is not only LR(1), it is a bounded context

grammar.

Now, since there is a test to determine if a given grammar is LR(k) for some

k, it is intuitive that the problem of finding the k is unsolvable. The test takes a finite

amount of time, and so it is possible to write a loop that would start at 0 and test

the grammar for each value k. If the grammar is LR(k) for some k, after a while, the

test will eventually find it, but if the grammar is not LR(k), the test will always fail,

and so the program will never halt. So, given such a program, and the solution to the

halting problem, it is easy to see if such a k does not exist, and if it does, the program

is executed to find the k, but since the halting problem is recursively unsolvable, so

is this solution.

To restate the theorem from [18] (page 627):
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Theorem 8. The problem of deciding, for a given grammar G, whether or not there

exists k ≥ 0 such that G is LR(k), is recursively unsolvable.

Proof. We shall prove this theorem by reducing the Partial Correspondence Problem

to the LR(k) problem for a particular grammar class. Let (α1, β1), . . . (αn, βn), be the

pairs for the Partial Correspondence Problem, and let

X1, X2, . . . , Xn, +

be n + 1 symbols, which do not appear in the α’s and the β’s.

Let G be our grammar:

S → A

S → B

A → Xi + αi, where 1 ≤ i ≤ n

A → XiAαi, where 1 ≤ i ≤ n

B → Xi + βi, where 1 ≤ i ≤ n

B → XiBβi, where 1 ≤ i ≤ n

Now, the sentential forms of this grammar are:

{Xim· · ·Xi1Aαi1· · ·αim} ∪ {Xim· · ·Xi1Bβi1· · · βim}∪

{Xim· · ·Xi1 + αi1· · ·αim} ∪ {Xim· · ·Xi1 + βi1· · · βim}

where 〈i1, . . . , im〉 are sequences of integers such that each 1 ≤ ik ≤ n.

Now, G is LR(k) for some k if and only if the Partial Correspondence Problem

has a negative answer.
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Consider if the Partial Correspondence Problem is positive. That means

that for each p ∈ N there exists a sequence 〈j1, . . . , jp〉 such that αj1· · ·αjp and

βj1· · · βjp match in the first p characters. That means that there are sentential forms

Xjp · · ·Xj1 +αj1· · ·αjp and Xjp · · ·Xj1 +βj1· · · βjp such that the first p characters after

the + match. Let q be the maximum length of αi’s and βi’s. Now, a grammar is

LR(k) means that it is uniquely determined by the left hand side of the handle and

the k characters following the handle. So, our handle for the rule Xi + ai will need to

be q characters long, however, for each p ∈ N , there exists a sentential form such that

the p − q characters following the handle match, so this grammar is not LR(p − q)

when the Partial Correspondence Problem is true.

Now consider if the Partial Correspondence Problem is false. That means there

is a p for which the first p characters of αj1· · ·αjp and βj1· · · βjp do not match, and

our sentential form is Xjt· · ·Xj1 + αj1· · ·αjt or Xjt· · ·Xj1 + βj1· · · βjt . We have the

sequence 〈j1, . . . , jmin(p,t)〉 such that we can determine whether there is a string of α’s

or β’s after the +, but in this case, we do not need to know more than p characters

to the left of the handle as well. This is not even an LR(p− q) grammar, G is simply

a bounded context grammar.

So if the Partial Correspondence Problem is true, G is not LR(k) for any

k, and if the problem is false G is a bounded context grammar. Since the Partial

Correspondence Problem is recursively unsolvable, the problem of deciding, for a

given grammar G, whether or not there exists a k ≥ 0 such that G is LR(k) is

recursively unsolvable.



CHAPTER 5

RESULTS

In order to talk about grammars with an infinite number of productions, an

example will first be considered which demonstrates the notion and gives some basic

insight into infinite grammars.

5.1 Van Wijngaarden Grammars

The theoretical and practical success of Context Free grammars was due to

their conceptual simplicity and the ability to use them to automatically generate

tools. Chomsky Type 1 languages, while simple, are difficult to use, and lack the

conciseness of context free definitions. Seeking to remedy this, Aad van Wijngaarden

created a two level system, based on context free grammars.

The essential insight is that Context Free grammar rules can express only a

finite number of context conditions. It intuitively follows that an infinite collection

of context free grammar rules may be able to express an infinite number of context

conditions. Also, the BNF syntax can be described by a context free grammar in BNF

syntax, and so it follows quite reasonably that a context free grammar meta system

could describe a concrete context free grammar, with a potentially infinite rule set.

This is the basis of van Wijngaarden grammars. The family of two-level grammars

is a collection of various metasystems which sit atop a context free basis. It is then

the hope that the theory of context free grammars can be used to make a tractable

system, while retaining the conceptual simplicity of context free grammars.

37
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The parts of a van Wijngaarden grammar are[12]:

M a finite set of metanotions

V a finite set of metaterminals, M
⋂

V = ∅.

N a finite set of hypernotions, a finite subset of (M
⋃

V )+.

T a finite set of terminals

RM a finite set of metarules, X → Y , where X ∈ M, Y ∈ (M
⋃

V )∗,

such that for all W ∈ M, (M, V, W, RM) is a context free grammar.

RV a finite set of hyperrules

h0 → h1 h2 . . . hm

where h0 ∈ N , hi ∈ (T
⋃

N
⋃
{ε}), such that 1 ≤ i ≤ m.

S ∈ N the start symbol.

Given a van Wijngaarden grammar G = (M, V, N, T, RM , RV , S), the set RS

is the set of strict rules of a hyperrule (i.e. the context free rules generated by the

hyperrule via consistent substitution)

r = h0 → h1 h2 . . . hm

containing the n ≥ 0 metanotions W1, W2, . . . ,Wn:

RS(r) = {φ(h0) → φ(h1) φ(h2) . . . φ(hm)}

φ is a homomorphism such that φ(v) = v for all v ∈ V or v = ε, φ(h0) 6= ε, and

φ(Wi) ∈ L((M, V, Wi, RM)) (i.e. φ(Wi) is in the language generated by the context

free grammar (M, V, Wi, RM). φ is called a consistent substitution. φ gives a sentence

in V which has no metanotions in it.
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NS is the set of strict notions, defined:

NS = {φ(h)|φ is a consistent substitution and h ∈ N}

The language generated by G, L(G), is the language generated by the set of

strict rules as potentially infinite context free grammar.

Less formally, a hyperrule is a template for a context free rule. Hyperrules can

have metanotions embedded in them, as part of the rule name or a terminal, this is

called a hypernotion. The metanotions are replaced by metaterminals generated from

the metasystem grammar. Metanotions must be replaced in a hyperrule by consistent

substitution with a production from the metasystem. Consistent substitution says all

occurrences of a metanotion must be replaced by the same metaterminal (different

productions of metaterminals create different instances of a hyperrule). A metanotion

is a context free rule describing the production of a metaterminal.

If the metasystem produced a finite language, a context free grammar with

a finite number of rules would be the result, and so nothing more would be pro-

duced. However, in the case that the metasystem produces an infinite set of strings,

a potentially infinite collection of context free rules would be the result.

It can be shown that an infinite collection of Context Free rules is capable of

producing any Type 0 language [33].

5.2 BNF Syntax Of Van Wijngaarden Grammars

It can help clear up the understanding of van Wijngaarden grammars to actu-

ally see one. Consider the simple context sensitive language anbncn.
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Wijngaarden Grammar for anbncn.

N → i | i N

A → a | b | c

〈text〉S ⇒ 〈aN〉 〈bN〉〈cN〉

〈Ai〉 ⇒ A

〈AiN〉 ⇒ A〈AN〉

In the terms of the formal notation:

• M = {N, A}, metanotions.

• V = {a, b, c, i}, metaterminals.

• N = {aN, bN, cN, Ai, AiN, AN, A}, hypernotions.

• T = {a, b, c}, terminals

• RM are the first two rules N, A.

• RV are the last three rules 〈text〉S, 〈Ai〉, 〈AiN〉

• S is 〈text〉.

For reference, here is the Type 1 Grammar for the same language.

SS → abc| aSQ

bQc → bbcc

cQ → Qc

Although any tool will show its best uses first, compared to the Type 1 gram-

mar it is both more concise and more readable. The consistent substitution principle

uses the N as a “counter” for the i’s and A is used a shortcut to make three rules for
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both the second and third hyperrules (Ai and AiN). The power of this example is

even better when it is extended to anbncndn:

Wijngaarden Grammar for anbncndn.

N → i | iN

A → a | b | c | d

〈text〉S ⇒ 〈aN〉〈bN〉〈cN〉〈dN〉

〈Ai〉 ⇒ A

〈AiN〉 ⇒ A〈AN〉

Compared to the contortions required in the Type 1 version, the clarity is much

appreciated. The book [5] is a excellent source for techniques involved in writing

Wijngaarden grammars, however, another another very important technique will be

considered.

In Context Free Grammars, ε rules reduce to nothing, and although theoreti-

cally they pose no problems, are a minor inconvenience to many parsing algorithms

which must be extended to handle them, or process the grammar to eliminate them.

However, hyperrules which reduce to ε are very special, and while some decidability

restrictions eliminate, they are the major technique for writing “predicates” in the

Wijngaarden grammars.

5.3 Undecidability Of Van Wijngaarden Grammars

Wijngaarden grammars are equivalent to Chomsky Type 0 grammars, and

thus it follows that they are, in general, undecidable. The proof is due to [10], but

also shows some common techniques in writing a Wijngaarden grammar.
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Theorem 9. For every Type-0 grammar, there is an equivalent Wijngaarden gram-

mar.

Proof. Let G be a Type-0 grammar. For any Type-0 grammar, there exists an equiv-

alent grammar in separated normal form, such that each rule is of one of the 3 forms:

〈l1〉〈l2〉 . . . 〈ln〉 → 〈r1〉〈r2〉 . . . 〈rm〉 (m, n ≥ 1)

〈l〉 → α

〈l〉 → ε

Where 〈li〉, 〈rk〉, and 〈l〉 are nonterminals, and α’s are terminals.

Let 〈s〉 be the start symbol of the separated version of G. An equivalent

Wijngaarden grammar is as follows. The metasystem is:

A → s | a1 | a2 | . . . | ak

L → ε | LA

R → L

A produces all the nonterminals of the Type-0 grammar.

Hyperrules. For each rule of the first form:

〈L l1 l2 . . . ln R〉 ⇒ 〈L r1 r2 . . . rm R〉

For each rule of the second form:

〈L l R〉 ⇒ 〈L〉α〈R〉

〈l〉 ⇒ α
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For each rule of the last form:

〈L l R〉 ⇒ 〈L R〉

And the start symbol is 〈s〉.

What is perhaps more surprising is that the choice of the metasystem has

little effect on the power. A regular metasystem is just as powerful as a Context Free

metasystem. This can even be seen in the construction of a Wijngaarden grammar

from a Chomsky Type 0 grammar, because all the metanotions are regular. Of course,

the choice of a regular system may make the construction of a grammar more difficult.

More usefully, one hopes to find a minimal restriction to the metasystem such that the

resulting system is decidable. [10] and [16] both give exactly these sorts of restrictions.

The ability to make use of those restrictions are explored in [35], [12], [14].

5.4 Infinite Grammars

Definition 11. An infinite grammar has an infinite number of productions, each with

only a finite number of different right hand sides.

Definition 12. An infinite grammar G that is a member of grammar class K is said

to be nontrivial if the language L(G) is not in the class of languages generated by

K.

Consider the following example of a nontrivial infinite grammar.

Theorem 10. The class of languages generated by regular metasystem with a regular

strict grammar can generate a context-sensitive language (i.e. a nontrivial language).
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Proof. Consider the language anbncn. It is an example of a context-sensitive language.

If the theorem holds, then a regular metagrammar can produce an (infinite) regular

grammar describing the language.

N → ε | i | iN

N1 → N

N2 → N

〈S〉S ⇒ a 〈a i〉

〈a Ni〉 ⇒ a 〈a Nii〉 | b 〈b Ni N〉

〈b N1 N2i〉 ⇒ b 〈b N1 N2〉

〈b N 〉 ⇒ c 〈c N〉

〈c Ni〉 ⇒ c 〈c N〉

〈c 〉 ⇒ ε

This grammar, while not as clear as the one presented in chapter 5, does

indeed produce the language, and it is still easily seen how to extend it to produce

anbncndn. It does so by using the N metarule as a counter. The N1 and N2 are used to

circumvent consistent substitution for the b rules. In fact, this grammar functions very

similar to the way a naive program might attempt to parse the language anbncn. Every

time an a is encountered, a new nonterminal is involved, whose name incorporates

the counter for the number of a’s encountered so far. Upon encountering the first b,

two “counters” are introduced, one for saving the result to pass on to the c’s, and

the other to countdown the number of b’s. Once the number of b’s has been counted

down, the c’s are counted down in the same manner.
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It is clear that the metagrammar is regular, since it the only nonterminals on

the righthand side are in a final position. While it does contain an ε rule, it is easy

to eliminate if desired.

It is clear that all the hyperrules are regular as well, since again, nonterminals

are only in final positions and there is only a single nonterminal per righthand side.

Theorem 11. The grammar, G given in the prior proof is LR(0).

Proof. To define a handle, recall from Chapter 4. Number the productions of the

grammar H (i.e. if there are j rules in the grammar, the rules will be labeled 1, . . . , j).

Let α = X1 . . . Xn . . . Xt be sentential form of the grammar H. Suppose for some

(partial) derivation, the leaves of a single node (which is for a production p) on the

tree have the form Xr+1 . . . Xn where 0 ≤ r ≤ n ≤ t and 1 ≤ p ≤ j, then (n, p)

is a handle of the sentential form α. Let 4 denote the position of the handle in a

sentential form.

A grammar is LR(k) if the following conditions hold. Let k ≥ 0 and let “a” be

new terminal symbol not in I
⋃

T where I is the set of nonterminals and T is alphabet

the language. A k-sentential form is a sentential form followed by k “a” characters.

Let α = X1X2 . . . XnXn+1 . . . Xn+kY1 . . . Yu and β = X1X2 . . . XnXn+1 . . . Xn+kZ1 . . . Zv

be k-sentential forms in which u ≥ 0 and v ≥ 0 and in which none of Xn+1, . . . , Xn+k,

Y1, . . . , Yu, Z1, . . . , Zv is a nonterminal. If (n, p) is a handle of α and (m, q) is a handle

of β, we require that m = n and p = q. In other words, a grammar is LR(k) if and

only if any handle is uniquely determined by the string to its left and the k terminal

characters to the right.

To show G is LR(0), we must show that any handle is uniquely determined by

the string its left and 0 terminal characters to the right.
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Consider a string in the language akbkck. Now, every production in the gram-

mar has two nodes, but the only production without nonterminals is 〈c 〉 ⇒ ε. So,

before any reductions can be made, the whole string must be consumed, so the first

handle which can be reduced will be akbkck4. Now, the string becomes akbkck〈c 〉4.

The only possible reduction is: akbkck−1〈c i〉4. But now, it is clear that since each

production only has two nodes, that each reduction will continue one character at a

time. At the boundary between the b’s and c’s we will have akbk〈c ik〉4. So the only

reduction is akbk〈b ik 〉4. Now the reductions will start consuming the b’s.

Since the handle was always the entire string, no terminals were to the right

of it, thus the grammar is indeed LR(0).

An interesting phenomenon seems to be occuring in these examples. What

happens when all restrictions that a grammar be finite are broken?

Theorem 12. Any language has an infinite LR(0) grammar.

Proof. Let L be a language. Part 1. Consider a lexicographic ordering on strings in

L. Let 〈S〉 be the start symbol. Now, for each terminal α, if any string starts with α

add the production:

〈S〉S → α 〈α〉

to our grammar G.

Now, consider each string which starts with α and whose second character is

β. Add the following production to the grammar:

〈α〉 → β 〈αβ〉
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In likewise manner, given the presence of a string in L whose lefthand portion is γ and

is k characters long, and whose k + 1 character is φ, add the following productions:

〈γ〉 → φ 〈γφ〉

For each string δ ∈ L, add the following production:

〈δ〉 → ε

Each, string δ in L is accepted by the nonterminal 〈δ〉, and the productions

which lead to 〈δ〉 proceed by creating a matching string in the language for the

nonterminals (constructed from the same alphabet as the terminals).

Since this grammar is regular except for the empty productions, it is also

LR(0).

Part 2. Now, we have created an infinite grammar, G which is LR(0), now we

must show that G generates exactly L.

Let a be a string L. Let ak denote the k’th character of a. Since a ∈ L, by

the construction of G there is a production in the grammar of the form:

〈S〉S → a1〈a1〉

Likewise, there is a production of the form:

〈a1〉 → a2〈a1a2〉
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In fact, for each k there is a production:

〈a1a2 . . . ak−1〉 → ak〈a1a2 . . . ak−1ak〉

So, a will be accepted by the production, now, for the final production 〈a1 . . . ak〉

there is a production of the form (since a ∈ L

〈a1 . . . ak〉 → ε

So our last production will accept a, and so a is in the language generated by G.

We must now show that there are no “extra” strings in the language generated

by our grammar. Let b be a string such that b /∈ L, where n is the length of b.

Now, if b1 is identical to the first character in some string in L, there will be

a production which starts to accept b:

〈S〉S → b1〈b1〉

However, since b /∈ L, one of the following must be true. Either b is the first part of

some string in L, in other words, for some a ∈ L, b = a1 . . . an. The other possibility

is that b shares the first k − 1 characters with some string in L and bk 6= ak, where

0 ≤ k ≤ n.

Now, in the first case, b will be generated by productions in G up to the nonter-

minal 〈b〉. However, since there are no strings in L equal to b, the only nonterminals

will be of the form:

〈b〉 → α〈bα〉
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So there is no rule which will finish the derivation tree for b.

The other case is similar, since there is a first character k which is different we

will match up to that k with the nonterminal 〈b1 . . . bk−1〉. Since there is no string in

L that starts with the same first k − 1 characters and has a next character bk there

is no production of the form:

〈b1 . . . bk−1〉 → bk〈b1 . . . bk−1bk〉

Hence b is not accepted by G, so the language generated by G is equal to L.

This proof is important because it shows that simply allowing an unstructured

infinite grammar increases the expressive power far beyond the limitations of finite

grammars (since even a regular grammar is capable of generating any Recursively

Enumerable language). In order to make useful infinite grammars, it is desirable to

create classes similar to the Chomsky hieararchy. In this respect, Wijngaarden meta-

grammar generates a Context Free language which is then used to create an infinite

Context Free grammar, and this was shown by Sintzoff to be capable of generating

the Type-0 languages (i.e. Recursively Enumerable), but the resulting infinite gram-

mar is not necessarily LR(k) for any k. Deussen came up with several restrictions on

a meta grammar and hypernotions (rule templates) to guarantee Decidable infinite

grammars (i.e. Context Sensitive languages), and Fisher showed how to restrict the

meta grammar and hypernotions to create an infinite LL(1) grammar (Which is also

decidable and allows for some standard parsing techniques to be used).

The goal of creating useful classes of infinite grammars leads very naturally to

the idea of a two-level grammar. A two-level grammar consists of a metalevel which

is used to generate an infinite grammar to describe a language. However, coming
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up with useful restrictions on the metalevel has proven to be hard, since nearly any

means of generating an infinite grammar leads to the ability to express any Recursively

Enumerable language. This has lead to another common approach, restrictions on

the metalevel and the rule templates which combine to make a language class which

is decidable (i.e. at most context sensitive) and whose strict (infinite) grammar has

nice properties (e.g. LR(1), LL(1), . . .).

As an interesting aside, while not strictly more powerful, generating a large

finite grammar can be useful in practice, and admits simpler (or at least shorter)

descriptions of many languages than would be otherwise possible. Consider what

would be possible if you generated a grammar with 100,000 productions. The ability

of a context free grammar to express only a finite number of context conditions is

more usable. The problem of parsing with such grammars involves problems similar

to the finite case since actually generating 100,000 rules and feeding them to a parser

generator will probably cause very large coefficients to come into play even on O(n)

parsers, if not actually breaking the algorithm to generate the parser or running the

system out of memory. [23]

Corollary 1. Any metasystem which can produce an infinite LR(k) grammar can

produce any language.

It has been shown that any language can be described by an infinite LR(0)

grammar. While this is a nice theoretical result, it is a depressing one. Finite LR(k)

grammars are not only decidable, but parsable in O(n) time. Since Type-0 grammars

are not in general decidable here is another easy fact:

Corollary 2. In general, an infinite LR(k) grammar is not decidable.

How does this relate to Knuth’s original conception of LR(k) languages?

Knuth defined them as languages that are translatable from left to right with only a
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finite lookahead. Of course, in the proof, a vacuous trick was used, which resolved all

ambiguities only at the end which caused a cascade of reductions backwards through

the parsing.

The author is now left with an interesting question. Is it possible to restore

any of the nice properties of finite LR(k) grammars to the infinite case? Some of

those properties include decidability and time complexity and language complexity.

It would be nice if it could be proved that a class of infinite LR(k) grammars is O(n)

and accepts all of the context-sensitive languages. This result would be of major

proportion because it would also imply that all of the context free languages can be

parsed in O(n) as well (the current bound is O(n2.87).

Theorem 13. Any Recursively Enumerable Language can be described by an infinite

LR(0) grammar which is Recursively Enumerable as well.

Proof. If a language L is recursively enumerable, then it is the range of some par-

tially computable function. By Theorem 9 from section 3.5, there exists a primitive

recursive function, f , which maps N to L.

Since f is computable on N we can construct another function g(n) which

creates productions to accept the n’th string in L in the manner used in Theorem 11.

Since a grammar produced by that algorithm will accept L, it now remains to show

that in this case, the grammar is recursively enumerable.

Since all the strings produced by f will be finite (if the n’th string is infinite,

f(n) will not terminate, and thus f(n) will not be comptuable, violating the lemma),

g(n) will only produce a finite number of grammar rules. So we can construct a third

function which produces the n’th grammar rule, by running g(x) on 1 to n (since

each string will have at least 1 production), and counting the output of g(x) until it
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produces the n’th rule. Since the grammar, G, can be produced by such an algorithm,

G must also be recursively enumerable by Theorem 9.

5.5 Infinite Languages

Given the assumption that a language is not a finite set of strings (but is on a

finite alphabet), it becomes clear that for any length n, there are only finitely many

strings in any language shorter than n. In other words, there is no upper bound on

the length of the strings; if there were, the language would be finite.

The graph theory explored in earlier proofs will now be explored. Given the

strings in a language L, a lexicographic ordering can be provided by ordering the

alphabet. A tree can be constructed which represents all the strings in the language.

Given an alphabet {s1, . . . , sn}, on the first level of the tree (from the root), if there

is a string α which starts with the character sk, a branch will be added labelled sk

from the root. Since there are only finitely many characters in the alphabet (n), the

root will have at most n branches. Inductively proceeding, any string starting with

sk whose second character is sk1 will result in adding a branch to sk labelled with sk1 .

Now, since at any particular stage, there are only finitely many strings shorter than

the depth of the tree (d), at each level the tree must be finite. Since the language is

infinite, there must be an infinite number of leaves on this tree, so the tree is infinite,

but since each vertex only has finitely many connections, it is locally finite.

König’s Lemma states that a locally finite tree is infinite if and only if it has

an infinite path. Since the tree is infinite, this must mean there is an infinite branch.

So if L is an infinite language, then a string of infinite length can be associated with

it.
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Theorem 14. König’s Lemma A locally finite tree is infinite iff it has an infinite

path.

Proof. Case 1. Assume the tree is infinite. The degree of each vertex is finite (i.e. the

tree is locally finite), so consider the root. If a vertex shares an edge with the root,

it is connected to either a finite number of vertices or an infinite number. If all the

vertices are connected to a finite number of vertices, the tree itself must be finite since

the root has finite degree. So at least one vertex is connected to an infinite number of

vertices. By induction, we may continue this process of selecting nodes on an infinite

branch of the tree. A selection which leads to a branch which terminates contradicts

our previous choices of the infinite branch, and so we must be able to continue this

path without bound, therefore, we have found an infinite path through the tree.

Case 2. Assume the tree has an infinite path. A tree is infinite if it has an

infinite number of levels. Each vertex of the path is on a level of the tree which must

be finite in size (since the tree is locally finite), but the path itself is infinite, so there

must be an infinite number of levels.

Definition 13. Given a language, L, a string α of length n is an initial substring of

L if there exists a string β ∈ L such that the first n characters of β are equal to the

characters of α.

Theorem 15. If L is an infinite language on a finite alphabet, there exists a string

of infinite length, α, with the property that every initial finite substring of α is also

an initial substring of a string in L.

Proof. The initial substrings of an infinite language L can be represented as a tree.

We may construct the tree such that particular initial substring α of length n is

represented by recursively concatenating the labels of nodes, where the node on the
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k’th level represents the k’th character of the initial substring. The root of the tree

is empty string. Since our language has a finite alphabet of size n, at most there are

n nodes on the first level, and n2 on the second level. In general, if the language is

Σ∗, the tree has at most nk nodes on the k’th level of the tree.

Since the alphabet is finite, the tree itself is locally finite (a node has one

parent and at most n children, so its maximum degree is n + 1).

Since the language is infinite, the tree must be infinite, since a finite number

of nodes would require our language to be finite as well. Since we have an locally

finite infinite tree, König’s lemma applies, and we may conclude that there exists an

infinite path within this tree. Since all paths through the tree are associated with

initial substrings of L, we can associate a string with this infinite path, which has

infinite length. Since there is no maximal length on the strings in L, at any finite

point, the string is a substring of a sentence in L.

In the case of finite strings, a Turing Machine M is said to accept a string α if

it halts when given α as the input on the tape. However, the traditional definition of a

Turing Machine assumes the tape initially has only finitely many non-blank symbols

on it. In order to consider how a Turing Macine M behaves in the presence of infinite

inputs, a way to present infinite inputs to M must be found.

The existence of a universal Turing Machine is a well known result in com-

putability theory. Such a machine starts with an encoding of a Turing Machine and

its input on the tape, and simulates the execution of the machine with that input.

A string is computable if there is a Turing Machine which will produce that string

as the output of its execution. If the Turing Machine never halts, but continues to

produce characters without backtracking, it will be said to produce an infinite string.



55

Now, given that there are only countable computable functions and an un-

countable number of finite length strings, it should be clear that not all infinite strings

will be computable either. However, if an infinite string is computable, a Universal

Turing Machine can be used to feed its output to another Turing Machine. Since it is

possible for a Turing Machine to execute multiple Turing Machines through the pro-

cess of dovetailing, a Universal Turing Machine can be designed which starts with an

encoding of two Turing Machines and the input of the second Turing Machine. The

first machine will be called C since it will consume the output of the other machine

G, the generator, which is executed with input string α, also encoded on the tape.

Now, when G has advanced, the universal machine begins the execution of C,

however, when C needs to advance past G’s current position, or after a finite number

of steps, the machine switches to G again. If C ever halts in a predetermined rejection

state, it has rejected its input. If G ever halts, and produces a finite string, and C

halts in a predetermined acceptance state, C has accepted the output of G. If G never

halts and C never halts, then it cannot be determined whether C has accepted G.

Theorem 16. If L is an infinite language on a finite alphabet, and the infinite string

from Theorem 15 is computable, then no Turing Machine which accepts L will reject

the infinite string.

Proof. Given the Universal Turing Machine previously described, and a machine G

which can compute the infinite string, α, from Theorem 15, we may feed α to Turing

Machine C, which accepts L. Since at all finite points of execution α is an initial

substring of L, C will never reject α. Since G will never halt, C will never be able to

halt, since there is no upper bound on the length of strings in L (otherwise, L would

be a finite language).
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How can this be? Consider a typical programming language. While lengths

on variable names may be restricted to some finite maximum, the grammars rarely

express such a constraint. Since there are a countably infinite number of variable

names of finite length, a programmer may proceed to declare an infinite number of

variables, and the grammar will thus accept the program, even though it never ends.

Another point of contention may be that, in definition 1, it was stated that a language

consists of only finite strings. It was not claimed that this infinite string is a member

of a language, only that an algorithm cannot reject it. This is a strong motivation that

the original definition, which rejected infinite strings, is a good one for computability

theory.

An illustrative language to consider is the set of all decimal expansions of

rational numbers. An irrational number would be an infinite string in such a language,

which at any finite stage will not be rejected, but since the string never ends it won’t

be accepted either.

If the properties of context free grammars are recalled, this result may seem a

little less surprising. The uvwxy theorem about original sentences shows as strings in

context free languages get longer, they become unoriginal and repetitive. In the case

of the infinite string, it is almost assuredly very boring. Context Sensitive languages

do not have a similar theorem, but a context sensitive grammar could enforce the rule

that variable names would be unique in the previous example, and so even Type-1

languages show a tendency to become boring as they get longer (it is true in literature

as well, where authors continue series of books long past the point where they are

interesting, and degrade into soap opera like repetitions of cheap plot devices).

However, since the string will neither be accepted or rejected, does this seem

to violate the fact that a Context Free Grammar is recursive? Recall that a set is
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recursive if an algorithm can always reject or accept a string as a member of the set.

However, those were all finite strings. Since at each finite stage, this infinite string is

along a fruitful path however, so proceeding ahead the parser will never find evidence

to reject the string, but it will never get to the end of the string either, so it will never

reject it.

Another important point is that such a grammar will require an infinite amount

of memory to process all strings in the language. Turing Machines also assume an

unbounded amount of memory as well, and in fact, a finite state machine with no

external memory is one of the few ideas in computability theory that does not assume

an infinite memory. However, all real world computers do not have an infinite amount

of memory, and so a parser on a real world computer will always be unable to accept

the entire language. Or will it?

Can a computer be built with a finite memory which would accept any string

from a given language? Assuming a way existed to feed the computer an infinite

string, there is such a class of languages, the regular languages (which includes Σ∗)

are equivalent to finite state machines without external memory (such as a tape). So

a computer with finite memory can accept all regular languages, assuming it does not

have to store the string itself.



CHAPTER 6

FUTURE WORK AND COMMENTS

Languages are all about meaning. They exist to allow humans to communicate.

Even the most arcane proof is an attempt to communicate to another human a true

fact, and the reasoning to show that fact is true. To quote two famous computer

scientists, “Programs must be written for people to read, and only incidentally for

machines to execute.”[1]. This is true of mathematical notation as well. It is the

author’s opinion that the best computer programs and the better languages for writing

them have a strong resemblance to executable mathematics. Others share a similar

belief about the power of formal methods, and in particular their usability: “Formal

methods will never have a significant impact until they can be used by people that

don’t understand them”[30].

6.1 Syntax And Semantics

All current mathematical models of semantics are in the end a means of de-

scribing formal systems. It has been shown in this thesis that a suitably powerful

means of specifying syntax can be as powerful as any other method, and that many

suitably powerful methods exist. Whether this is appropriate is perhaps a question

of philosophy more than anything.

In specifying a formal system, it is as much about modularity that semantics

is distinguished from syntax. This is a natural way to do it, and the presence of a

“meta” level in such systems is very common. Quibbling about which level should be

used to specify a fact is less important than the overall effectiveness of the system.
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These systems are as much about usability as anything. Bringing the power of for-

mal methods to a larger audience who need not be aware of the deep mathematical

reasoning underlying such systems. People just want to use them.

This is not the only perspective on semantics. Denotational semantics in par-

ticular considers syntax to be incapable of properly specifiying meaning. Denotational

semantics translates programs into mathematical constructs. Yet, mathematical con-

structs are written down in a precise, formal notation, which itself is no more powerful

than the most powerful methods of expressing syntax. Given these insights, one is

brought to the question of why mathematical notation is considered more fundamen-

tal. However, Denotational semantics has its uses. Others may be more aligned with

the goals of this thesis.

Operational semantics is perhaps the most popular semantic formalism in use

today. It is lightweight and fairly easy to read and write. Interestingly enough, its

use of metavariables is similar to their use in Wijngaarden grammars.

6.2 Applications And Uses

It is also a worthy exercise to consider how these theoretical concepts have been

applied. The programming language Algol 60 introduced the Backus-Naur Form to

the world, and the notation was used to specify the context free portions of the

language. It is easy to tell programming languages designed before this, as it is often

impossible or difficult to write a context free grammar for these languages, but nearly

every language since has a nice grammar.

This marked the beginning of the Compiler-Compiler dream in Computer Sci-

ence as well. The goal of a compiler-compiler is that a complete formal specification

for a language may be used to produce a compiler without any user intervention.
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After eight years of work and revision, the Algol 68 report was released, which

completely specified the language’s syntax and semantics with a Wijngaarden gram-

mar. This, like the earlier Algol 60 report, marked the introduction of the notation

as well as its use. It should be noted that several competing methods to the BNF

had emerged during this period, but none were significantly better or related so well

to the Chomsky model of language introduced in the late 50’s, and so both IBM’s

Vienna Definition Model and the CODASYL notation (used to specify COBOL) are

now only footnotes in the literature.

Knuth introduced Attribute Grammars, which eliminate some decidability

problems with Wijngaarden grammars, and they, along with Affix Grammars are

used in several linguistic systems and compiler construction toolkits.

The study of Wijngaarden grammars seemed to dead-end in the mid-80’s with

[12] as the last paper published that could be found. Linguists still use them some,

along with several other methods, but they do not always care about decidability

or computational uses of their grammars. However, this study has confirmed what

has been reported anecdotally and in the occasional paper. The original progenitors

of Wijngaarden grammars seem to have all headed off to theorem provers such as

Prolog and ML. Unification, a major part of any computational study of formal logic,

is fundamentally similar to the consistent substitution rule of Wijngaarden grammars.

6.3 Future Work

The next logical step is implementing a “parser” using some of the refer-

ences in this thesis. Such a parser would allow the specification of many example

grammars and exploration of the problems involved in their use along with their
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efficiency. It would be especially interesting to adopt the techniques used in the de-

cidable Wijngaarden grammars to an Operational Semantics coupled with a Context

Free Grammar.

In the quest to design programming languages, many of these topics lead to

Type Systems, garbage collection, proof-carrying code, and other “lightweight” the-

orem provers. A type system is a formal system which guarantees that a properly

typed program will never “go wrong”.

Areas of mathematics which are commonly used in these areas include Cate-

gory Theory, Abstract Algebra, and Mathematical Logic. Going deeper in these fields

and their connections to formal languages is likely to yield a deeper understanding of

the issues involved and how to solve the problems in current theories.
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